Mobile, Alabama

Background Research Project

Can asphalt binders be improved by adding certain additives?

- FHWA 2018 Exploratory Advanced Research (EAR) Program funded a research project to identify aging-resistant technologies.
- NCAT and GHK partnered with five industry collaborators—*Blacklidge Emulsions, Chemco Systems, Iowa State University, Kraton Corporation, and Lehigh Technologies*—to evaluate five candidate aging-resistant additives, each with a Technology Readiness Level (TRL) of 2 or 3.

Technologies Evaluated

- Additive 1: A two-component chemical system of low-modulus epoxy polymer and a blend of asphalt and oil-based flexible modifiers.
- Additive 2: A hybrid system of ground tire rubber powder and a functional elastomer, a stabilizer, and a dispersant additive.
- Additive 3: A hybrid system of a continuous-phase styrene block copolymer with a pine-based performance chemical additive.
- Additive 4: An additive made from sub-epoxidized soybean oil.
- Additive 5: A blend of biosynthetic oils, petroleum-based oils, and rheology modifiers.

Project Objectives

- Understand how asphalt changes and how additives work with respect to aging.
- Determine the effects of additives on the rheological and chemical characteristics of binders.
- Demonstrate effects of additives on mixture cracking resistance.
 Determine pavement life extension benefits.

Study divided in three phases

- Phase 1: Selection of two base binders by rheological and chemical evaluation before and after oxidation.
- Phase 2: Rheological and chemical evaluation of the base binders and their blends with each additive and RAP binder before and after exposure to oxidation and UV radiation.
- Phase 3: Asphalt mixture cracking evaluation and simulation of the potential life-extending benefits of these additives using FlexPAVE[®].

11/20/2024

11/20/2024

Base Binder Selection Phase 1	
Six Base Asphalt Binders	
Binder 1 PG 64-16 South Central Binder 2 West Coast Binder 3 West Coast Binder 3 PG 67-22 Southeast West Coast West Coast West Coast RTFO/PAV20 and RTFO/PAV60 Performance Grade and △T _c	r5 Binder 6 28 PG 64-22 rn Western Ja Canada The six base binders were sent to each research partner for
SARA Fractions Elemental Analysis (Inductively Coupled Plasma Optical Emission Spectrometry ICP OES) Selection of two base binders	internal evaluation with the partner's proposed aging-resistant technology.

Asph <i>Phase</i>	Asphalt Binder Experiment <i>Phase 2</i>					
Chemical	Testing					
	Property	Test	Aging Level	Research Parameters		
	Molecular Size Distribution	Gel Permeation Chromatography (Kraton)	Unaged RTFO+60hPAV	Molecular Weight		
	Thermal Behavior	Differential Scanning Calorimetry (WRI)	RTFO+60hPAV	Glass Transition (Tg) Temperature		
	Oxidative Aging Products	FTIR-ATR (NCAT)	Unaged RTFO+60hPAV UV Radiation	Carbonyl and Sulfoxide Groups		
	Fatty Acids	GC/MS (WRI)	Unaged RTFO+60hPAV	Fatty Acids		
	Chemical Composition	SARA Fractionation (Kraton)	Unaged RTFO+60hPAV	Colloidal Index, SARA Fractions		

Asp Phas	Asphalt Binder Experiment <i>Ph</i> ase 2					
Rheolog	ical Testing					
	Temperature Range	Test	Standard	Research Parameters	Aging Level	
	High-Temperature	DSR	AASHTO M 320	G* /sin(δ) G* .sin(δ)	Unaged, RTFO, RTFO+20hPAV RTFO+60hPAV	
		DSR	AASHTO M 332	J _{nr3.2} and %R _{3.2}	RTFO	
		DSR LAS	AASHTO T 391	Cycles to failure (N _t), strain at peak stress	RTFO+60hPAV	
	Temperature	DSR Master curve	AASHTO T 315	G-R, G* , δ Black space diagram	Unaged RTFO+60hPAV UV Radiation	
		BBR	AASHTO T 313	Stiffness, m-value & ΔT_c	RTFO+20hPAV RTFO+60hPAV UV Radiation	
	Low- temperature	BBR	AASHTO TP 122 (Adapted)	Physical hardening behavior, stiffness, m-value & ΔΤ _c	RTFO+60hPAV	

Dr. Raquel Moraes, NCAT

11/20/2024

				Unaged, RTFO a	nd RTFO +	PAV (°C)			
Asphalt Sample	Cycle	T _{cont} High Original	T _{cont} High RTFO	T _{cont} Intermediate	T _{cont} Low	T _{cont} Low m-value	∆T _c	PG HT	PG L
D: 1 4	20-hour	65.7		25.0	-26.1	-19.9	-6.2	64	-16
Binder I	60-hour	100.7	66.6	30.2	-24.4	-9.7	-14.7	100	-4
	20-hour	65.6		20.8	-28.4	-28.8	0.4	64	-28
Binder 5	CO have	1024	67.4	25.2	-26.5	-22.7	-3.8	100	-22

 Rheological modifiers impacting molecular relaxation that are beneficial to Binder 1 will likely have little influence on Binder 5.

Useful	Temperature Interval (UTI)	
RTFO/PA	V60, without RAP	

Binder ID	PG	UTI (°C)	Binder ID	PG	UTI (°C)
Binder 1	100-4	104	Binder 5	100-22	122
Binder 1 + Additive 1 OD	94-22	116 🕇	Binder 5 + Additive 1 OD	118-22	140 🕇
Binder 1 + Additive 2 OD	112-10	110	Binder 5 + Additive 2 OD	118-16	134
Binder 1 + Additive 3 OD	136-22	134	Binder 5 + Additive 3 OD	124-22	102
Binder 1 + Additive 4 OD	88-22	110	Binder 5 + Additive 4 OD	94-28	122 =
Binder 1 + Additive 5 OD	94-16	110	Binder 5 + Additive 5 OD	100-28	128

Effects at Low-Temperature <u>Binder 1 + RAP + Additive after RTFO/PAV60</u>

- Additive blends were ranked from best to worst according to the difference in $\Delta T_c/PGL$ versus the control/RAP blend. Relative improvements in °C are included in parentheses.

Improvement in ΔT_c

Additive 4 OD (+8.9) > Additive 3 AD (+2.8) > Additive 5 OD (+2.6) > Additive 2 AD (0.0).

Improvement in PGL

Additive 3 AD (-16.5) > Additive 4 OD (-13.5) > Additive 5 OD (-4.5) > Additive 2 AD (-4.2).

□ Additive 4 effectively restores relaxation and adds over two PG grades to the RTFO/PAV60 PGL. □ Additive 3 lowers the PGL but is less effective in restoring ΔT_c.

Additive 5 shows modest improvement in both values and Additive 2 is relatively ineffective.

Linear Amplitude Sweep Test RTFO/PAV60

AASHTO T 391 adapted.

Modifications

- Damage was calculated based on changes in pseudo stiffness (|G*|/|G*|initial), whereas in the past, it was calculated based on changes in |G*|sindelta.
 The reason is that the effect of damage on |G*| is very clear, but damage does not necessarily cause a change in phase angle.
- The failure definition was a drop from the peak stress by 10%, whereas in the past, a 35% reduction in |G*|sindelta was used.
 This better reflects ultimate failure and distinguishes unmodified vs. polymer-modified binder performance
- Binders presented similar $|G^*|_{LVE,\ 10\ Hz}$ values within the 12 to 60 MPa range at a testing temperature of 20°C.

11/20/2024

4

Dr. Raquel Moraes, NCAT

Mobile, Alabama

Crackin	g Param	eters	s Using v	anous c	nuer
 Best performation highest strain 	ance is judged to b tolerance from the	e the smallest G-I	R _{effectiveness index} , the hi	ghest positive valu	ie of ΔT_{cr} and the
Binder 1 + RAP				Binder 5 + RAP	
G-R Effectiveness Index	ΔT _c	LAS Strain at Peak Stress	G-R Effectiveness Index	ΔT _c	LAS Strain at Peak Stress
Additive 4 OD	Additive 4 OD	Additive 4 OD	Additive 4 OD	Additive 4 OD	Additive 3 OD
Additive 4 AD	Additive 4 AD	Additive 3 AD	Additive 4 AD	Additive 5 OD	Additive 2 AD
Additive 2 AD	Additive 3 AD		Additive 3 OD	Additive 4 AD	Additive 3 AD
Additive 2 OD	Additive 5 OD		Additive 5 OD	Additive 3 AD	Additive 4 AD
Additive 3 AD	Additive 5 AD	Additive 4 AD	Additive 3 AD	Additive 5 AD	Additive 2 OD
Additive 5 OD	Additive 2 AD	Additive 3 OD	Additive 5 AD	Additive 3 OD	Additive 5 OD
Additive 5 AD	Additive 3 OD	Additive 5 AD	Additive 2 AD		Additive 4 OD
Additive 3 OD	Additive 2 OD	Additive 5 OD	Additive 2 OD	Additive 2 AD	Additive 5 AD

Classification of Additives Using Various Binder Cracking Parameters

- Additive 2 and Additive 3 contain a high dosage of polymeric modifiers, as identified by MSCR %R_{3.2}, yet displayed less favorable rankings for both G-R and ΔT_c parameters.
- Polymer systems increase binder stiffness and lower phase angle, leading to more negative ΔT_c.
 Rankings were mid-range for ΔT_c and G-R but high for LAS strain-at-peak-stress.
 These results suggest that these additives deserve a boost in crack performance rating over those for rheology-based relaxation properties alone.
- rheology-based relaxation properties alone.
 Without adjustment, Additive 2 and Additive 3 may be penalized in performance rankings.
- The oil-based modifiers (Additive 4 and Additive 5) reduced the stiffness and increased the binders' phase angle, a behavior captured by both G-R and ΔT_c parameters.

Pavement Analysis using FlexPAVE Mixture Percent Damage

FTIR-ATR <u>C=0+</u>S=0 areas

Approach 2 subtracts out the carbonyl oxygen attributable to the fatty acids (i.e., secondary peak within the
region of the C=O functions) in the bio-oils but keeps the ketone carbonyls responsible for the loss of
relaxation properties during asphalt aging.

vement A	Analysis using	
mage evolu:	tion results - addi	tive's life extension benefit
Jungo or or or or		
Min ID	Mandle As us at F0/ damage	
Control Binder 1	24	
Binder 1 + Additive 1	30	6
Binder 1 + Additive 2	62	38
Binder 1 + Additive 3	222	198
Binder 1 + Additive 4	22	-2
Binder 1 + Additive 5	34	10
Mix ID	Months to reach 8% damage	Life extension compared to Control, months
Control Binder 5	51	0
Binder 5 + Additive 1	148	97
Binder 5 + Additive 2	72	21
Binder 5 + Additive 3	212	161
Binder 5 + Additive 4	30	-21
Binder 5 + Additive 5	78	27

Conclusions

The effectiveness of the aging-resistant additives varied based on the base binder and the presence of RAP.

 All five additives helped reduce the negative effects of aging in both neat and their blends with RAP. However, they proved more effective in Binder 1 (m-controlled, more negative ΔT_c), where improve the phase angle directly translated to better low-temperature performance. ents in ΠH

Although no direct evidence indicates that these additives slow oxidation kinetics, they may offer significant benefits in stabilizing low-quality virgin binders or brittle RAP binder blends.

While the additives were selected for their aging-resistant potential to disrupt and decelerate oxidation, which leads to the formation of ketones (carbonyl groups), the complex nature of asphalt oxidation has long resisted a purely chemical solution. Instead, the most practical strategy involves using age-stable rheological modifiers that restore molecular mobility and enhance relaxation properties where needed most.

