

Cold Central Plant Recycling

Brian Diefenderfer, PhD, PE **Principal Research Scientist**

Southeastern Asphalt User Producer Group November 20, 2024

Outline

- Introduction to pavement recycling
 - Benefits and equipment
- · Pavement design
 - Empirical and M-E
- VDOT case studies
- Specification resources
- Summary

Pavement Recycling Processes

- Full-depth reclamation (FDR)
 - Pavement foundation
 - Mixed in the road
- Cold in-place recycling (CIR)
 - Upper portions of the asphalt layers
 - Mixed in the road
- *Cold central plant recycling (CCPR)*
 - Similar to CIR but at a mobile plant
 - Can be placed in multiple layers

Why We Should Recycle Pavements

- Time savings
 - Tx DOT
- Cost savings (up to 50%)
 - FHWA, Tx DOT, SC DOT, VDOT
- Environmental benefits (up to 40%)
- Ability to better address <u>causes</u> of deterioration rather than symptoms

CCPR

- <u>Product</u> is similar to CIR*, <u>process</u> is a little different
 - *Mechanical properties as measured during NCHRP 9-51
- Both combine RAP (up to about 96%), foamed asphalt or emulsified asphalt (3-4%), and cement (sometimes, 1%)
 - No heating other than asphalt binder when foamed
 - May add screenings or other aggregates if gradation needs help

Pavement Design

Most states use either AASHTO '93 and/or Pavement ME

- AASHTO '93
 - Limited because it doesn't consider mechanical properties
 - Layer coefficients range from 0.2 to 0.4
- Pavement ME
 - Existing distress prediction equations (transfer functions) may not be representative

CCPR

- RAP
 - CIR = processed in the road
 - CCPR = hauled from project (to treat foundation) and then back or sourced from existing stockpiles
- Foamed vs emulsified asphalt
 - Both used successfully!
 - Foam introduces a little less water (0.5 to 1%)
 - Mix design requirements and cost

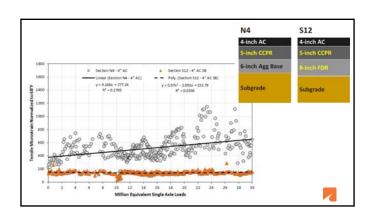
VDOT Case Studies

- Where do we use pavement recycling?
 - Interstates to subdivisions
- CCPR
 - Used as a substitute for asphalt base mixture
 - Benefits to use on top of FDR
- I-81, NCAT, I-64

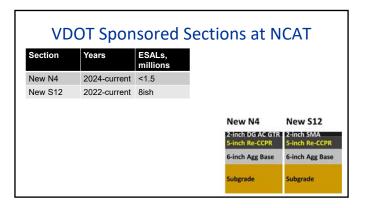
CCPR

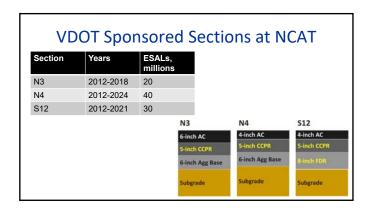
Treatment depths

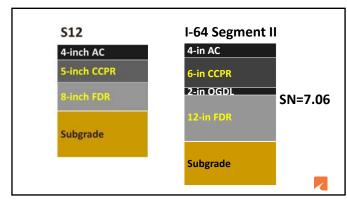
- Achievable density is the determining factor
- 3-5 inches, up to 6 (per lift)

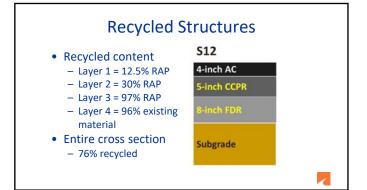


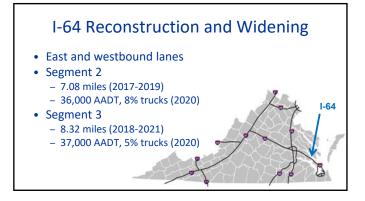
I-81 (2011)

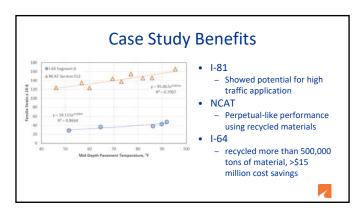

- South of Staunton, VA
- SB direction
- 3.7 miles
- FDR + CCPR right lane
- 29,000 AADT
- 29% trucks











Specifications

- NCHRP 14-43
 - Construction Guide Specs for CIR and CCPR

 - Mix design
 see AASHTO M 352, R 117, MP 38, PP 94
- Wirtgen Cold Recycling Manual; **ARRA Basic Asphalt Recycling** Manual (BARM)

Takeaways

CCPR - a proven method for pavement rehabilitation

- Time, cost, and environmental savings
- Applicable to all traffic levels
- Many great examples of specs available nationally from which to borrow

Thank you!

brian.diefenderfer@vdot.virginia.gov